Energy Structure and Photocatalytic Activity of Niobates and Tantalates Containing Sn(II) with a 5s² Electron Configuration

Yasuhiro Hosogi,[†] Kentaro Tanabe,[†] Hideki Kato,[†] Hisayoshi Kobayashi,^{††} and Akihiko Kudo^{*†,†††}

[†]Department of Applied Chemistry, Faculty of Science, Science University of Tokyo,

1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601

^{††}Department of Chemical Technology, College of Science and Industrial Technology, Kurashiki University of Science and Arts,

2640 Nishinoura, Tsurajima-cho, Kurashiki-shi, Okayama 712-8505

^{†††}Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST),

4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012

(Received October 1, 2003; CL-030925)

 SnNb_2O_6 (BG = 2.3 eV) containing Sn^{2+} with a 5s² electron configuration showed the photocatalytic activity for H₂ evolution from an aqueous methanol solution under visible light irradiation ($\lambda > 420 \text{ nm}$) in the presence of a Pt cocatalyst. The energy structure calculation by the plane wave based density functional method revealed that the conduction and valence bands consisted of Nb4d and Sn5s orbitals, respectively. The valence band level consisting of the Sn5s orbitals was more negative than that consisting of O2p orbitals resulting in SnNb₂O₆ being responsive to visible light.

Photocatalytic water splitting is an important theme in terms of a light energy conversion to a chemical energy. Some metal oxide photocatalysts which can split water into H₂ and O₂ in a stoichiometric amount with high efficiencies under UV light irradiation have been reported.^{1–3} Some metal sulfides such as CdS and AgInZn₇S₉ have also been reported as photocatalysts which can efficiently reduce water to form H₂ under visible light irradiation in the presence of sacrificial reagents.^{4,5} Recently, metal oxynitride and oxysulfide have also been found to be active photocatalysts.^{6,7} However, metal oxide photocatalysts efficiently working for H₂ evolution under visible light irradiation have not been developed even in the presence of sacrificial reagents.

Valence bands of many oxide semiconductor photocatalysts consist of O2p orbitals and their potentials (ca. 3 eV) are considerably more positive than an oxidation potential of water to form O₂ ($E^{\circ}O_2/H_2O = 1.23 \text{ eV}$ at pH 0). If a conduction band of a photocatalyst has a potential enough for H₂ formation by the reduction of water ($E^{\circ}H_2O/H_2 = 0 \text{ eV}$ at pH 0), the band gap is inevitably larger than 3 eV. It results in that the oxide photocatalyst responds to only UV light. Therefore, the valence band of which the potential is more negative than that consisting of O2p orbitals has to be formed with some other orbitals.

BiVO₄ (BG = 2.4 eV) shows the high activity for O₂ evolution from an aqueous AgNO₃ solution under visible light irradiation.⁸ The visible light response is due to the band structure in which the valence band consists of Bi³⁺ with a 6s² electron configuration. Therefore, the present auothors have paid attention to Sn(II) with a 5s² electron configuration, similarly to Bi³⁺, as an element which could form a valence band. In the present paper, photocatalytic H₂ evolution from an aqueous methanol solution on niobates and tantalates containing Sn(II) were studied.

Sn₂Nb₂O₇, Sn₂Ta₂O₇, SnNb₂O₆, and SnTa₂O₆ were pre-

pared by solid-state reactions. Starting materials used were as follows; SnO (Wako Pure Chemical, purity; 99.9%), Nb₂O₅ (Kanto Chemical, purity; 99.95%), and Ta₂O₅ (Rare Metallic, purity: 99.99%). Mixtures of the starting materials were calcined at 973-1273 K for 6-40 h in a nitrogen flow using an alumina boat. Diffuse reflectance spectra were measured using a UVvis NIR spectrometer with an integrating sphere (JASCO, Ubest-570). Photocatalytic reactions of H₂ evolution from an aqueous methanol solution (10 vol %) were conducted in a gas-closed circulation system. The photocatalyst powder (0.3 g) was dispersed in the solution (150 mL) by a magnetic stirrer in a cell with a top-window made of Pyrex. Pt cocatalysts were loaded in situ by a photodeposition method using H₂PtCl₆. The light source was a 300 W Xe illuminator (ILC technology; CERMAX, LX300F) attached with cut-off filters (Kenko). The amounts of H₂ evolved were determined using gas chromatography (Shimadzu; GC-8A, TCD, Ar carrier). The plane wave based density functional method was carried out for SnNb₂O₆ employing the CASTEP program.⁹ The core electrons were replaced with the ultrasoft core potentials, and the valence electronic configurations for Sn, Nb, and O atoms were 5s²5p², 4s²4p⁶5s¹4d⁴, and $2s^22p^4$, respectively. The calculations were carried out using the primitive unit cell of (SnNb₂O₆)₂, and the number of occupied molecular orbital was 66.

Table 1 shows photocatalytic H₂ evolution from an aqueous methanol solution under visible light irradiation ($\lambda > 420 \text{ nm}$) or UV light irradiation ($\lambda > 300 \text{ nm}$) on Sn₂Nb₂O₇, Sn₂Ta₂O₇, SnNb₂O₆, and SnTa₂O₆. Pt/Sn₂Ta₂O₇ showed the photocatalytic activity for H₂ evolution under UV light irradiation. In contract, Pt/Sn₂Nb₂O₇ didn't show the photocatalytic activity even if Sn₂Nb₂O₇ has the same pyrochlore structure as Sn₂Ta₂O₇. This difference in the photocatalytic activity between niobates and tantalates is probably due to the difference in their conduction band levels. Pt/SnNb₂O₆ showed the photocatalytic activity for H₂ evolution under visible light irradiation. On the other hand, Pt/SnTa₂O₆ didn't show the activity. The non-activity would be due to defects working as recombination centers between photogenerated electrons and holes because SnTa₂O₆ was prepared at higher temperature (1273 K) and for longer time (40 h) than other niobates and tantalates. In fact, preparation at higher temperature and for longer time for SnNb₂O₆ and Sn₂Ta₂O₇ gave low activities.

The rate of H₂ evolution was about $18 \,\mu \text{mol}\,\text{h}^{-1}$ at the initial stage over the optimized Pt/SnNb₂O₆ photocatalyst as shown in Figure 1. The turnover number of the amount of reacted elec-

Table 1. Photocatalytic activities of niobates and tantalates containing Sn(II) for H_2 evolution from an aqueous methanol solution

Photocatalyst	Preparation	Band	Incident	Activity
	condition	gap/eV	light/nm	$/\mu mol h^{-1}$
Sn ₂ Ta ₂ O ₇	1073 K/5 h	3.0	$\lambda > 300$	2.1
$Sn_2Nb_2O_7$	1073 K/7 h	2.3	$\lambda > 420$	0
SnTa ₂ O ₆	1273 K/40 h	3.1	$\lambda > 300$	0
$SnNb_2O_6$	1173 K/6 h	2.3	$\lambda > 420$	18

trons to the number of Sn on the surface was 180 at 10 h of the reaction time. The employed number of Sn was calculated by taking $1.3 \text{ m}^2/\text{g}$ of a BET surface area and a (011) plane of the SnNb₂O₆ crystal into account. The X-ray diffraction pattern was unchanged after the reaction. The H₂ evolution was not observed under dark condition. These results concluded that the H₂ evolution proceeded photocatalytically. In contrast, the SnNb₂O₆ photocatalyst didn't show the activity for overall water splitting or O₂ evolution from an aqueous AgNO₃ solution.

Figure 1. Photocatalytic H₂ evolution from an aqueous methanol solution (150 ml) under visible light irradiation ($\lambda > 420 \text{ nm}$) over Pt (0.3 wt%)/SnNb₂O₆ powder (0.3 g).

Figure 2 shows the wavelength dependency for the H_2 evolution and a diffuse reflectance spectrum of SnNb₂O₆ which showed the photocatalytic activity under visible light irradiation. The wavelength was controlled with cut-off filters. A wide absorption band with an onset around 540 nm and a sharp absorption edge were observed. The shape of the spectrum indicated that the absorption band was due to not an impurity level but a band gap transition. The band gaps of oxide photocatalysts in which the conduction and valence bands consist of Nb4d and O2p orbitals, respectively, are usually larger than 3 eV. In contrast, the band gap of $SnNb_2O_6$ was estimated to be 2.3 eV; that was a small value for niobates. The calculation of the band structure by the density functional method indicated that the conduction band of the SnNb2O6 photocatalyst consisted of Nb4d orbitals while the valence band was formed with a hybrid orbital of Sn5s and O2p. This valence band level was more negative than that consisting of only O2p orbitals. It has been clarified that the wide absorption band in the visible light region of the $SnNb_2O_6$ photocatalyst was due to the transition from the valence band

Figure 2. Wavelength dependency for the H_2 evolution and a diffuse reflection spectrum of $SnNb_2O_6$ photocatalyst.

formed with Sn5s orbitals to the conduction band consisting of Nb4d orbitals. The onset of the wavelength dependency agreed with that of the diffuse reflectance spectrum indicating that the photocatalysts reaction proceeded with the band gap excitation.

In conclusion, the rare oxide photocatalyst which is active for H₂ evolution under visible light irradiation SnNb₂O₆, has been developed as an active photocatalyst for H₂ evolution from an aqueous methanol solution under visible light irradiation ($\lambda > 420$ nm). It is noteworthy that the valence band was formed with Sn5s orbitals resulting in the decrease in the band gap of oxide photocatalysts. Sn²⁺ with a 5s² electron configuration is an effective element for forming a valence band in oxide photocatalysts as well as previously reported Bi^{3+, 8}

This work was supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology (JST) Corporation, a Grant-in-Aid (No. 14050090) for the Priority Area Research (No. 417) from the Ministry of Education, Culture, Sports, Science, and Technology.

References

- K. Domen, J. N. Kondo, M. Hara, and T. Takata, *Bull. Chem.* Soc. Jpn., 73, 1307 (2000).
- 2 A. Kudo, Catal. Surv. Asia, 7, 31 (2003).
- 3 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, *J. Phys. Chem. B*, **107**, 7965 (2003).
- 4 T. Sakata, in "Photocatalysis: fundamentals and applications," ed. by N. Serpone and E. Pelizzetti, Wiley & Sons, New York (1989), Chap. 10, p 311.
- 5 A. Kudo, I. Tsuji, and H. Kato, Chem. Commun., 2002, 1958.
- 6 A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, *J. Phys. Chem. A*, **106**, 6750 (2002).
- 7 A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, J. Am. Chem. Soc., **124**, 13547 (2002).
- 8 A. Kudo, K. Omori, and H. Kato, J. Am. Chem. Soc., **121**, 11459 (1999).
- 9 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, *Rev. Mod. Phys.*, **64**, 1045 (1992).